Home
Das Hidden-Markov-Modell: Zufallsprozesse mit verborgenen Zuständen und ihre wahrscheinlichkeitstheoretischen Grundlagen
Barnes and Noble
Loading Inventory...
Das Hidden-Markov-Modell: Zufallsprozesse mit verborgenen Zuständen und ihre wahrscheinlichkeitstheoretischen Grundlagen in Franklin, TN
Current price: $17.99

Barnes and Noble
Das Hidden-Markov-Modell: Zufallsprozesse mit verborgenen Zuständen und ihre wahrscheinlichkeitstheoretischen Grundlagen in Franklin, TN
Current price: $17.99
Loading Inventory...
Size: Paperback
Im Mittelpunkt dieses
essentials
steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.
Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.
Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.
In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).
essentials
steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.
Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.
Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.
In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).
Im Mittelpunkt dieses
essentials
steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.
Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.
Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.
In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).
essentials
steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.
Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.
Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.
In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).