The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Deep Learning Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems

Deep Learning Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems in Franklin, TN

Current price: $59.99
Get it in StoreVisit retailer's website
Deep Learning Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems

Barnes and Noble

Deep Learning Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems in Franklin, TN

Current price: $59.99
Loading Inventory...

Size: Paperback

The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Find Barnes and Noble at CoolSprings Galleria in Franklin, TN

Visit Barnes and Noble at CoolSprings Galleria in Franklin, TN
Powered by Adeptmind