The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
DESider - A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007

DESider - A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007 in Franklin, TN

Current price: $219.99
Get it in StoreVisit retailer's website
DESider - A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007

Barnes and Noble

DESider - A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007 in Franklin, TN

Current price: $219.99
Loading Inventory...

Size: OS

Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining “affordable” computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to “bridge” the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.
Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining “affordable” computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to “bridge” the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind