The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Fun��es de Dist�ncia Aplicadas a Algoritmos de Aprendizagem de M�quina

Fun��es de Dist�ncia Aplicadas a Algoritmos de Aprendizagem de M�quina in Franklin, TN

Current price: $44.00
Get it in StoreVisit retailer's website
Fun��es de Dist�ncia Aplicadas a Algoritmos de Aprendizagem de M�quina

Barnes and Noble

Fun��es de Dist�ncia Aplicadas a Algoritmos de Aprendizagem de M�quina in Franklin, TN

Current price: $44.00
Loading Inventory...

Size: OS

É imensa a listas de algoritmos na área de Aprendizagem de Máquina que utilizam funções de distância. Podemos citar os algoritmos de agrupamento como o k-means, as redes neurais Kohonen e RBF, além do exemplo mais claro que é o k-NN. O objetivo desse trabalho é mostrar que diferentes funções de distâncias podem ser empregadas para melhorar a performance de tais algoritmos. Utilizaremos como estudo de caso o k-NN e a rede RBF. Uma vez que a forma como se realiza essa medida pode interferir no comportamento do algoritmo, grande variedade de funções de distância foi desenvolvida justamente para se conseguir melhores resultados nos algoritmos que as empregam. Esse trabalho compara o comportamento das funções HEOM, HVDM, DVDM, IVDM, NCM e mais algumas variações dessa última aqui propostas. Para tanto essas funções serão utilizadas em dois algoritmos de classificação: o k-NN e as redes RBF. Também é testada a resposta às modificações desses algoritmos sob as mesmas funções de distância.
É imensa a listas de algoritmos na área de Aprendizagem de Máquina que utilizam funções de distância. Podemos citar os algoritmos de agrupamento como o k-means, as redes neurais Kohonen e RBF, além do exemplo mais claro que é o k-NN. O objetivo desse trabalho é mostrar que diferentes funções de distâncias podem ser empregadas para melhorar a performance de tais algoritmos. Utilizaremos como estudo de caso o k-NN e a rede RBF. Uma vez que a forma como se realiza essa medida pode interferir no comportamento do algoritmo, grande variedade de funções de distância foi desenvolvida justamente para se conseguir melhores resultados nos algoritmos que as empregam. Esse trabalho compara o comportamento das funções HEOM, HVDM, DVDM, IVDM, NCM e mais algumas variações dessa última aqui propostas. Para tanto essas funções serão utilizadas em dois algoritmos de classificação: o k-NN e as redes RBF. Também é testada a resposta às modificações desses algoritmos sob as mesmas funções de distância.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind