The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Gaussian and Non-Gaussian Linear Time Series and Random Fields / Edition 1

Gaussian and Non-Gaussian Linear Time Series and Random Fields / Edition 1 in Franklin, TN

Current price: $109.99
Get it in StoreVisit retailer's website
Gaussian and Non-Gaussian Linear Time Series and Random Fields / Edition 1

Barnes and Noble

Gaussian and Non-Gaussian Linear Time Series and Random Fields / Edition 1 in Franklin, TN

Current price: $109.99
Loading Inventory...

Size: OS

Much of this book is concerned with autoregressive and moving av­ erage linear stationary sequences and random fields. These models are part of the classical literature in time series analysis, particularly in the Gaussian case. There is a large literature on probabilistic and statistical aspects of these models-to a great extent in the Gaussian context. In the Gaussian case best predictors are linear and there is an extensive study of the asymptotics of asymptotically optimal esti­ mators. Some discussion of these classical results is given to provide a contrast with what may occur in the non-Gaussian case. There the prediction problem may be nonlinear and problems of estima­ tion can have a certain complexity due to the richer structure that non-Gaussian models may have. Gaussian stationary sequences have a reversible probability structure, that is, the probability structure with time increasing in the usual manner is the same as that with time reversed. Chapter 1 considers the question of reversibility for linear stationary sequences and gives necessary and sufficient conditions for the reversibility. A neat result of Breidt and Davis on reversibility is presented. A sim­ ple but elegant result of Cheng is also given that specifies conditions for the identifiability of the filter coefficients that specify a linear non-Gaussian random field.
Much of this book is concerned with autoregressive and moving av­ erage linear stationary sequences and random fields. These models are part of the classical literature in time series analysis, particularly in the Gaussian case. There is a large literature on probabilistic and statistical aspects of these models-to a great extent in the Gaussian context. In the Gaussian case best predictors are linear and there is an extensive study of the asymptotics of asymptotically optimal esti­ mators. Some discussion of these classical results is given to provide a contrast with what may occur in the non-Gaussian case. There the prediction problem may be nonlinear and problems of estima­ tion can have a certain complexity due to the richer structure that non-Gaussian models may have. Gaussian stationary sequences have a reversible probability structure, that is, the probability structure with time increasing in the usual manner is the same as that with time reversed. Chapter 1 considers the question of reversibility for linear stationary sequences and gives necessary and sufficient conditions for the reversibility. A neat result of Breidt and Davis on reversibility is presented. A sim­ ple but elegant result of Cheng is also given that specifies conditions for the identifiability of the filter coefficients that specify a linear non-Gaussian random field.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind