The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Guidelines for Evaluating Water Pit Slope Stability

Guidelines for Evaluating Water Pit Slope Stability in Franklin, TN

Current price: $66.99
Get it in StoreVisit retailer's website
Guidelines for Evaluating Water Pit Slope Stability

Barnes and Noble

Guidelines for Evaluating Water Pit Slope Stability in Franklin, TN

Current price: $66.99
Loading Inventory...

Size: Paperback

Guidelines for Evaluating Water in Pit Slope Stability is a comprehensive account of the hydrogeological procedures that should be followed when performing open pit slope stability design studies. Created as an outcome of the Large Open Pit (LOP) project, an international research and technology transfer project on the stability of rock slopes in open pit mines, this book expands on the hydrogeological model chapter in the LOP project’s previous book
Guidelines for Open Pit Slope Design
(Read & Stacey, 2009; CSIRO Publishing/CRC Press).
The book comprises six sections which outline the latest technology and best practice procedures for hydrogeological investigations. The sections cover: the framework used to assess the effect of water in slope stability; how water pressures are measured and tested in the field; how a conceptual hydrogeological model is prepared; how water pressures are modelled numerically; how slope depressurisation systems are implemented; and how the performance of a slope depressurisation program is monitored and reconciled with the design.
Guidelines for Evaluating Water in Pit Slope Stability offers slope design practitioners with a road map that that will help them decide how to investigate and treat water pressures in pit slopes. It provides guidance and essential information for mining and civil engineers, geotechnical engineers, engineering geologists and hydrogeologists involved in the investigation, design and construction of stable rock slopes.
Guidelines for Evaluating Water in Pit Slope Stability is a comprehensive account of the hydrogeological procedures that should be followed when performing open pit slope stability design studies. Created as an outcome of the Large Open Pit (LOP) project, an international research and technology transfer project on the stability of rock slopes in open pit mines, this book expands on the hydrogeological model chapter in the LOP project’s previous book
Guidelines for Open Pit Slope Design
(Read & Stacey, 2009; CSIRO Publishing/CRC Press).
The book comprises six sections which outline the latest technology and best practice procedures for hydrogeological investigations. The sections cover: the framework used to assess the effect of water in slope stability; how water pressures are measured and tested in the field; how a conceptual hydrogeological model is prepared; how water pressures are modelled numerically; how slope depressurisation systems are implemented; and how the performance of a slope depressurisation program is monitored and reconciled with the design.
Guidelines for Evaluating Water in Pit Slope Stability offers slope design practitioners with a road map that that will help them decide how to investigate and treat water pressures in pit slopes. It provides guidance and essential information for mining and civil engineers, geotechnical engineers, engineering geologists and hydrogeologists involved in the investigation, design and construction of stable rock slopes.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind