The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture in Franklin, TN

Current price: $179.99
Get it in StoreVisit retailer's website
High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

Barnes and Noble

High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture in Franklin, TN

Current price: $179.99
Loading Inventory...

Size: Hardcover

Neural network (NN) algorithms are driving the rapid development of modern artificial intelligence (AI). The energy-efficient NN processor has become an urgent requirement for the practical NN applications on widespread low-power AI devices. To address this challenge, this dissertation investigates pure-digital and digital computing-in-memory (digital-CIM) solutions and carries out four major studies.
For pure-digital NN processors, this book analyses the insufficient data reuse in conventional architectures and proposes a kernel-optimized NN processor. This dissertation adopts a structural frequency-domain compression algorithm, named CirCNN. The fabricated processor shows 8.1x/4.2x area/energy efficiency compared to the state-of-the-art NN processor. For digital-CIM NN processors, this dissertation combines the flexibility of digital circuits with the high energy efficiency of CIM. The fabricated CIM processor validates the sparsity improvement of the CIM architecture for the first time. This dissertation further designs a processor that considers the weight updating problem on the CIM architecture for the first time.
This dissertation demonstrates that the combination of digital and CIM circuits is a promising technical route for an energy-efficient NN processor, which can promote the large-scale application of low-power AI devices.
Neural network (NN) algorithms are driving the rapid development of modern artificial intelligence (AI). The energy-efficient NN processor has become an urgent requirement for the practical NN applications on widespread low-power AI devices. To address this challenge, this dissertation investigates pure-digital and digital computing-in-memory (digital-CIM) solutions and carries out four major studies.
For pure-digital NN processors, this book analyses the insufficient data reuse in conventional architectures and proposes a kernel-optimized NN processor. This dissertation adopts a structural frequency-domain compression algorithm, named CirCNN. The fabricated processor shows 8.1x/4.2x area/energy efficiency compared to the state-of-the-art NN processor. For digital-CIM NN processors, this dissertation combines the flexibility of digital circuits with the high energy efficiency of CIM. The fabricated CIM processor validates the sparsity improvement of the CIM architecture for the first time. This dissertation further designs a processor that considers the weight updating problem on the CIM architecture for the first time.
This dissertation demonstrates that the combination of digital and CIM circuits is a promising technical route for an energy-efficient NN processor, which can promote the large-scale application of low-power AI devices.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind