The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Introduction to Complex Reflection Groups and Their Braid Groups / Edition 1

Introduction to Complex Reflection Groups and Their Braid Groups / Edition 1 in Franklin, TN

Current price: $49.95
Get it in StoreVisit retailer's website
Introduction to Complex Reflection Groups and Their Braid Groups / Edition 1

Barnes and Noble

Introduction to Complex Reflection Groups and Their Braid Groups / Edition 1 in Franklin, TN

Current price: $49.95
Loading Inventory...

Size: OS

Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GL
r
(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra.
It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups.
Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GL
r
(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra.
It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind