The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Introduction to Hierarchical Bayesian Modeling for Ecological Data

Introduction to Hierarchical Bayesian Modeling for Ecological Data in Franklin, TN

Current price: $63.99
Get it in StoreVisit retailer's website
Introduction to Hierarchical Bayesian Modeling for Ecological Data

Barnes and Noble

Introduction to Hierarchical Bayesian Modeling for Ecological Data in Franklin, TN

Current price: $63.99
Loading Inventory...

Size: OS

Making statistical modeling and inference more accessible to ecologists and related scientists,
Introduction to Hierarchical Bayesian Modeling for Ecological Data
gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models.
The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website.
This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.
Making statistical modeling and inference more accessible to ecologists and related scientists,
Introduction to Hierarchical Bayesian Modeling for Ecological Data
gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models.
The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website.
This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind