The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Mathematical Theory of Incompressible Nonviscous Fluids / Edition 1

Mathematical Theory of Incompressible Nonviscous Fluids / Edition 1 in Franklin, TN

Current price: $169.99
Get it in StoreVisit retailer's website
Mathematical Theory of Incompressible Nonviscous Fluids / Edition 1

Barnes and Noble

Mathematical Theory of Incompressible Nonviscous Fluids / Edition 1 in Franklin, TN

Current price: $169.99
Loading Inventory...

Size: OS

Fluid dynamics is an ancient science incredibly alive today. Modern technol­ ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi­ cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo­ theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe­ matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe­ maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
Fluid dynamics is an ancient science incredibly alive today. Modern technol­ ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi­ cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo­ theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe­ matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe­ maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind