The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Multiscale Physical Processes of Fine Sediment an Estuary

Multiscale Physical Processes of Fine Sediment an Estuary in Franklin, TN

Current price: $220.00
Get it in StoreVisit retailer's website
Multiscale Physical Processes of Fine Sediment an Estuary

Barnes and Noble

Multiscale Physical Processes of Fine Sediment an Estuary in Franklin, TN

Current price: $220.00
Loading Inventory...

Size: Hardcover

Estuaries are natural highly dynamic and rapidly changing systems, comprising a complex combination of physical processes on many different time- and space- scales. The research conducted a systematic study on the topic of fine sediment physical processes in a meso-tidal convergent alluvial estuary. By means of multi-approaches (field survey, laboratory experiment and numerical modeling) and from multi-angles (data-driven analysis and process-based modeling) we highlight that multiscale (including micro- and macro- scale) physical processes jointly characterize the current and sediment regime in a fine sediment estuarine system.
The study presented in this book investigates micro- and macro- scale physical processes of a large-scale fine sediment estuarine system with a moderate tidal range as well as a highly seasonal-varying freshwater inflow. Based on a series of measured, experimented and modelled data, the research highlights that (i) along-channel fresh-salt gradient near an estuarine turbidity maximum zone is a key parameter controlling local density stratification and sedimentation in the channel; (ii) the salinity-induced baroclinic pressure gradient forces are a major factor impacting internal velocity and suspended sediment concentration (SSC) structures; (iii) vertical profiles of current, salinity and SSC within a river plume are dependent on a correct prediction of the development of turbulence; (iv) both suspended particulate matter availability and local residual flow regime are of critical importance for trapping probability of sediment and the occurrence of fluid mud; (v) river discharge impacts the horizontal and vertical distribution of residual current; (vi) seasonally varying wind effect alters the residual currents near the riverine limit; (vii) seasonally varied mean sea level and wind climate jointly shape the saltwater intrusion length near the estuarine front.
Estuaries are natural highly dynamic and rapidly changing systems, comprising a complex combination of physical processes on many different time- and space- scales. The research conducted a systematic study on the topic of fine sediment physical processes in a meso-tidal convergent alluvial estuary. By means of multi-approaches (field survey, laboratory experiment and numerical modeling) and from multi-angles (data-driven analysis and process-based modeling) we highlight that multiscale (including micro- and macro- scale) physical processes jointly characterize the current and sediment regime in a fine sediment estuarine system.
The study presented in this book investigates micro- and macro- scale physical processes of a large-scale fine sediment estuarine system with a moderate tidal range as well as a highly seasonal-varying freshwater inflow. Based on a series of measured, experimented and modelled data, the research highlights that (i) along-channel fresh-salt gradient near an estuarine turbidity maximum zone is a key parameter controlling local density stratification and sedimentation in the channel; (ii) the salinity-induced baroclinic pressure gradient forces are a major factor impacting internal velocity and suspended sediment concentration (SSC) structures; (iii) vertical profiles of current, salinity and SSC within a river plume are dependent on a correct prediction of the development of turbulence; (iv) both suspended particulate matter availability and local residual flow regime are of critical importance for trapping probability of sediment and the occurrence of fluid mud; (v) river discharge impacts the horizontal and vertical distribution of residual current; (vi) seasonally varying wind effect alters the residual currents near the riverine limit; (vii) seasonally varied mean sea level and wind climate jointly shape the saltwater intrusion length near the estuarine front.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind