The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology / Edition 1

Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology / Edition 1 in Franklin, TN

Current price: $109.99
Get it in StoreVisit retailer's website
Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology / Edition 1

Barnes and Noble

Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology / Edition 1 in Franklin, TN

Current price: $109.99
Loading Inventory...

Size: OS

The study of phase transitions is among the most fascinating fields in physics. Originally limited to transition phenomena in equilibrium systems, this field has outgrown its classical confines during the last two decades. The behavior of far from equilibrium systems has received more and more attention and has been an extremely active and productive subject of research for physicists, chemists and biologists. Their studies have brought about a more unified vision of the laws which govern self-organization processes of physico-chemical and biological systems. A major achievement has been the extension of the notion of phase transi­ tion to instabilities which occur only in open nonlinear systems. The notion of phase transition has been proven fruitful in apphcation to nonequilibrium ins- bihties known for about eight decades, like certain hydrodynamic instabilities, as well as in the case of the more recently discovered instabilities in quantum optical systems such as the laser, in chemical systems such as the Belousov-Zhabotinskii reaction and in biological systems. Even outside the realm of natural sciences, this notion is now used in economics and sociology. In this monograph we show that the notion of phase transition can be extend­ ed even further. It apphes also to a new class of transition phenomena which occur only in nonequilibrium systems subjected to a randomly fluctuating environment.
The study of phase transitions is among the most fascinating fields in physics. Originally limited to transition phenomena in equilibrium systems, this field has outgrown its classical confines during the last two decades. The behavior of far from equilibrium systems has received more and more attention and has been an extremely active and productive subject of research for physicists, chemists and biologists. Their studies have brought about a more unified vision of the laws which govern self-organization processes of physico-chemical and biological systems. A major achievement has been the extension of the notion of phase transi­ tion to instabilities which occur only in open nonlinear systems. The notion of phase transition has been proven fruitful in apphcation to nonequilibrium ins- bihties known for about eight decades, like certain hydrodynamic instabilities, as well as in the case of the more recently discovered instabilities in quantum optical systems such as the laser, in chemical systems such as the Belousov-Zhabotinskii reaction and in biological systems. Even outside the realm of natural sciences, this notion is now used in economics and sociology. In this monograph we show that the notion of phase transition can be extend­ ed even further. It apphes also to a new class of transition phenomena which occur only in nonequilibrium systems subjected to a randomly fluctuating environment.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind