The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Normal 2-Coverings of the Finite Simple Groups and their Generalizations

Normal 2-Coverings of the Finite Simple Groups and their Generalizations in Franklin, TN

Current price: $69.99
Get it in StoreVisit retailer's website
Normal 2-Coverings of the Finite Simple Groups and their Generalizations

Barnes and Noble

Normal 2-Coverings of the Finite Simple Groups and their Generalizations in Franklin, TN

Current price: $69.99
Loading Inventory...

Size: Paperback

This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,
This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind