The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Partial Differential Equations VI: Elliptic and Parabolic Operators / Edition 1

Partial Differential Equations VI: Elliptic and Parabolic Operators / Edition 1 in Franklin, TN

Current price: $109.99
Get it in StoreVisit retailer's website
Partial Differential Equations VI: Elliptic and Parabolic Operators / Edition 1

Barnes and Noble

Partial Differential Equations VI: Elliptic and Parabolic Operators / Edition 1 in Franklin, TN

Current price: $109.99
Loading Inventory...

Size: OS

0. 1. The Scope of the Paper. This article is mainly devoted to the oper­ ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex­ pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame­ ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi­ mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space.
0. 1. The Scope of the Paper. This article is mainly devoted to the oper­ ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in !Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex­ pound theorems on Fredholm property of elliptic operators, on smoothness of solutions of elliptic equations, and, in the case of ellipticity with a parame­ ter, on their unique solvability. A parametrix for an elliptic operator A (and A-). . J) is constructed by means of the calculus of pseudodifferential also for operators in !Rn, which is first outlined in a simple case with uniform in x estimates of the symbols. As functional spaces we mainly use Sobolev £ - 2 spaces. We consider functions of elliptic operators and in more detail some simple functions and the properties of their kernels. This forms a foundation to discuss spectral properties of elliptic operators which we try to do in maxi­ mal generality, i. e. , in general, without assuming selfadjointness. This requires presenting some notions and theorems of the theory of nonselfadjoint linear operators in abstract Hilbert space.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind