The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Quantitative Operational Risk Models

Quantitative Operational Risk Models in Franklin, TN

Current price: $130.00
Get it in StoreVisit retailer's website
Quantitative Operational Risk Models

Barnes and Noble

Quantitative Operational Risk Models in Franklin, TN

Current price: $130.00
Loading Inventory...

Size: Hardcover

Using real-life examples from the banking and insurance industries,
Quantitative Operational Risk Models
details how internal data can be improved based on external information of various kinds. Using a simple and intuitive methodology based on classical transformation methods, the book includes real-life examples of the combination of internal data and external information.
A guideline for practitioners, the book begins with the basics of managing operational risk data to more sophisticated and recent tools needed to quantify the capital requirements imposed by operational risk. The book then covers statistical theory prerequisites, and explains how to implement the new density estimation methods for analyzing the loss distribution in operational risk for banks and insurance companies. In addition, it provides:
Simple, intuitive, and general methods to improve on internal operational risk assessment
Univariate event loss severity distributions analyzed using semiparametric models
Methods for the introduction of underreporting information
A practical method to combine internal and external operational risk data, including guided examples in SAS and R
Measuring operational risk requires the knowledge of the quantitative tools and the comprehension of insurance activities in a very broad sense, both technical and commercial. Presenting a nonparametric approach to modeling operational risk data,
offers a practical perspective that combines statistical analysis and management orientations.
Using real-life examples from the banking and insurance industries,
Quantitative Operational Risk Models
details how internal data can be improved based on external information of various kinds. Using a simple and intuitive methodology based on classical transformation methods, the book includes real-life examples of the combination of internal data and external information.
A guideline for practitioners, the book begins with the basics of managing operational risk data to more sophisticated and recent tools needed to quantify the capital requirements imposed by operational risk. The book then covers statistical theory prerequisites, and explains how to implement the new density estimation methods for analyzing the loss distribution in operational risk for banks and insurance companies. In addition, it provides:
Simple, intuitive, and general methods to improve on internal operational risk assessment
Univariate event loss severity distributions analyzed using semiparametric models
Methods for the introduction of underreporting information
A practical method to combine internal and external operational risk data, including guided examples in SAS and R
Measuring operational risk requires the knowledge of the quantitative tools and the comprehension of insurance activities in a very broad sense, both technical and commercial. Presenting a nonparametric approach to modeling operational risk data,
offers a practical perspective that combines statistical analysis and management orientations.

More About Barnes and Noble at CoolSprings Galleria

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

1800 Galleria Blvd #1310, Franklin, TN 37067, United States

Powered by Adeptmind