Home
Robotic Fish iSplash-I: High Performance Swimming Motion of a Carangiform Roboti
Barnes and Noble
Loading Inventory...
Robotic Fish iSplash-I: High Performance Swimming Motion of a Carangiform Roboti in Franklin, TN
Current price: $9.99

Barnes and Noble
Robotic Fish iSplash-I: High Performance Swimming Motion of a Carangiform Roboti in Franklin, TN
Current price: $9.99
Loading Inventory...
Size: OS
Abstract-This book presents a novel robotic fish, iSplash-I, with full-body coordination and high performance carangiform swimming motion. The proposed full-body length swimming motion coordinates anterior, mid-body and posterior displacements in an attempt to reduce the large kinematic errors in the existing free swimming robotic fish. It optimizes forces around the center of mass and initiates the starting moment of added mass upstream. A novel mechanical drive system was devised operating in the two swimming patterns. Experimental results show, that the proposed carangiform swimming motion approach has significantly outperformed the traditional posterior confined undulatory swimming pattern approach in terms of the speed measured in body lengths/ second, achieving a maximum velocity of 3.4BL/s and consistently generating a velocity of 2.8BL/s at 6.6Hz.
Abstract-This book presents a novel robotic fish, iSplash-I, with full-body coordination and high performance carangiform swimming motion. The proposed full-body length swimming motion coordinates anterior, mid-body and posterior displacements in an attempt to reduce the large kinematic errors in the existing free swimming robotic fish. It optimizes forces around the center of mass and initiates the starting moment of added mass upstream. A novel mechanical drive system was devised operating in the two swimming patterns. Experimental results show, that the proposed carangiform swimming motion approach has significantly outperformed the traditional posterior confined undulatory swimming pattern approach in terms of the speed measured in body lengths/ second, achieving a maximum velocity of 3.4BL/s and consistently generating a velocity of 2.8BL/s at 6.6Hz.